

Introduction to Computer Science

Presented by
Don Stokes
Team 3641

April 29, 2015

Binary Numbers

● Humans use a base 10 numbering system.
– Each digit can take on 10 different values (0 … 9).

– Subsequent digits are worth 10 times the previous digit.

● Computers use a base 2 numbering system.
– Each digit can take on the values 0 or 1.

– Subsequent digits are worth 2 times the previous digit.

● Example: Binary number 1011
– Decimal equivalent is 1*8+0*4+1*2+1*1 = 11

● Computers use binary because values can be represented
by electrical switches that are off or on with no ambiguity.

Binary Addition

● 0 + 0 = 0; 0 + 1 = 1; 1 + 1 = 10 (with a carry bit)
● Four bit example:

 1010
+_0011
= 1101

Complement Operation

● One's Complement is calculated by flipping all bits.
● Example: One's Complement of 0011 is 1100.

● Two's Complement is One's Complement plus 1.
● Example: Two's Complement of 0011 is 1101.
● Negative binary numbers are expressed as the Two's

Complement of the positive number.
● Example:

Decimal -7
Binary -0111 = 1000 + 1 = 1001

Binary Subtraction

● Binary subtraction can be done by adding a
negative value (Two's Complement).

● Example:
Decimal: 10 – 7 = 3
Binary: 1010 + (1000 + 1) = 0011

(notice the carry from the fourth bit is lost)

Hexadecimal

● It is not easy to convert large numbers between binary and decimal. Try
it! The problem is due to 10 not being a power of 2.

● Binary numbers can be cumbersome to deal with. We need 16 digits
just to express decimal 64,000.

● For convenience, we often use a base 16 numbering system called
hexadecimal. Each hexadecimal digit will align with each 4 binary digits.
Converting to/from binary never requires dealing with a number larger
than 15 decimal.

● Hex Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
● Example: Binary 10110100 = Hex B4

– Decimal: 11*16+4=180

● Sometimes a base 8 system called octal is used.

Boolean Operators

● Boolean logic is math based on values FALSE and TRUE.
– (or 0 and 1)

● Base 10 math has operators like addition, subtraction,
multiplication and division.

● Binary operators are NOT, AND, OR, XOR.
– NOT: Result is the opposite of the operand.

– AND: Result is 1 if ALL operands are 1, otherwise 0.

– OR: Result is 1 if ANY operands are 1, otherwise 0.

– XOR: Result is 1 if an ODD number of operands are 1,
otherwise 0.

Logic Gates

● Electrical circuits designed for boolean logic are
called Logic Gates.

● NOT, AND, OR, XOR, NAND, NOR, …

Combinational Logic

● Interesting logic circuits can be constructed from
logic gates.

● Logic circuits that only depend upon their current
inputs are called combinational logic. Examples:
– Half Adder

– Full Adder

● The output will appear after some propagation
delay.

Sequential Logic
● Logic circuits that depend on their current

inputs and previous state are called sequential
logic.

● Examples:
– Latches

– Flip-Flops

– Counters

– Registers

● Sequential logic is useful for holding binary values

Arithmetic Logic Unit

● A combinational logic circuit known as an
Arithmetic Logic Unit (ALU) is available for
computing simple integer math functions like
ADD, SUBTRACT, AND, OR, XOR, and
Complement.

Memory

● Circuits for storing large amounts of data are
called memory.

● Memory that cannot be modified once the initial
contents are stored is called Read Only Memory
(ROM). ROM retains its contents even after
power is removed.

● Memory that can read or update any location is
called Random Access Memory (RAM). RAM
loses its contents after power is removed.

Central Processing Unit

● A sequential logic circuit that executes a list of instructions is a
central processing unit (CPU).

● This circuit includes other circuits such as:
– Registers

– ALU

– Instruction Decoding

– Sequencer

● External circuits are required for clock signal, memory, Input /
Output (I/O).

● A clock signal is a periodic pulse that is used for sequencing
sequential circuits.

Microcontroller

● A microcontroller (MCU) is a circuit that
combines a CPU, clock, memory, and I/O
peripherals.

● An MCU is typically embedded in a product for
control purposes.

● One product example is ROBOTS!

System on a Chip (SOC)

● An SOC is similar to an MCU, but it contains
very sophisticated peripherals, such as USB
and graphics display controllers.

● By combining an SOC and a few components,
a complete computer can be produced.
Examples: Raspberry Pi, Beagle Bone

A Simple Microprocessor

● Intel 8080 (from 1974)
● 8 Bit Microprocessor
● Useful Introduction:

http://en.wikipedia.org/wiki/Intel_8080
● Download the user manual here:

http://www.elenota.pl/datasheet-pdf/133557/Inte
l/8080

● Play with an emulator here (use Firefox):
http://bluishcoder.co.nz/js8080/

http://en.wikipedia.org/wiki/Intel_8080
http://www.elenota.pl/datasheet-pdf/133557/Intel/8080
http://www.elenota.pl/datasheet-pdf/133557/Intel/8080
http://bluishcoder.co.nz/js8080/

Programming

● A CPU repeats a cycle of:
– Fetching the next instruction from memory (determined

by the Program Counter).

– Advancing the Program Counter

– Decoding the instruction

– Modifying registers, memory or peripherals

● The activity of designing, implementing and
debugging a set of instructions (program) is called
programming.

Machine Code Programming

● Programming in the binary language that a
CPU understands is called machine code
programming.

● Nobody does this anymore because we have
computer programs called assemblers that
automate the process.

Assembly Language Programming

● This is the lowest level of programming done by programmers.
● Each line of an assembly language program usually corresponds to one

instruction that the CPU executes.
● Additional lines are programmed to tell the assembler how to generate the

machine code.
● Instead of entering the machine code instruction number into the program,

human friendly mnemonics are used.
– Example: ADD is the addition instruction. 3 is the machine code on the PC.

● The assembler will keep track of memory addresses and allow usage of
human readable labels for them.

● Assembly language is time consuming and usually only done when a higher
level programming language cannot be used due to technical reasons, like
CPU initialization.

The “C” Programming Language

● The “C” programming language is a favorite for
machine control.

● This language is the next level up from assembly
language.

● C program statements are converted into machine code
instructions that are directly executable by CPUs. This
leads to programs that run very efficiently (fast, small).

● A program that converts “C” language statements to
machine code is called a C Compiler.

C Program Sample

#include <stdio.h>

int main(int argc, char *argv[]) {

 printf(“Hello, World!\n”);

 return 0;

}

C Plus Plus (C++)

● The C++ programming language is a superset of the C
programming language.

● C++ adds object oriented concepts to C. (C is procedure
oriented.)

● C++ programs require a larger runtime library, which
results in a bigger program. (Libraries are pre-compiled
statements that are combined with the programmer's
statements to produce the executable program.)

● Editorial: Do not start learning C++ until you have learned
C! You learned to walk before you learned to run.

C++ Program Sample

#include <iostream>
using namespace std;
int main(int argc, char *argv[]) {
 cout << "Hello, World!" << endl;
 return 0;
}

High Level Languages

● High level languages are easier to learn than lower level
languages. (auto type conversion, no declarations, ...)

● Some high level languages include simple statements
for doing complex operations, like manipulating
databases (SQL).

● Many high level languages do not generate machine
code and require an interpreter program at runtime to
execute. The result is slower running programs.

● Examples: Java, BASIC, shell scripts, batch files

Software Development Process

● Analysis: What do we need to do? (gather requirements)
● Design: How will we do it? (planning)
● Implementation: Program according to the design.
● Testing: Execute the program and check results.
● Debugging: Determine cause of failed test.
● Verification and Validation: Are all requirements satisfied?
● Deployment: Deliver software to the user and install.
● Support: Help the user with issues. (training)
● Maintenance: Update the software when new requirements are

submitted or problems are found.

UML, SysML

● Unified Modeling Language, System Modeling Language
● Software applications (tools) for analysis and design.

Some tools automate some of the implementation. (code
generation)

● These are graphical languages for developing pictures that
clearly specify the analysis and design.

● Includes diagrams for: Use Cases, Objects/Classes,
Object States, Object Collaboration Sequencing, Flow
Charts

● A picture is worth a thousand words!

Integrated Development
Environment (IDE)

● Software application (tool) for writing programs,
compiling executable files, and debugging.

● Programming aids like Auto Completion. It guesses
what you want to write and offers you suggestions.

● Advanced searching capabilities. Example: Where
are all places a variable is used?

● Popular IDEs: Eclipse, NetBeans, Arduino IDE,
Visual Studio

Object Oriented Programming

● Focus is on Classes of Objects
● What properties do objects have?
● What operations can be performed on objects?
● What are the relationships between objects,

especially inheritance.
● Details of implementation are hidden by

classes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

