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Binary Numbers

● Humans use a base 10 numbering system.
– Each digit can take on 10 different values (0 … 9).

– Subsequent digits are worth 10 times the previous digit.

● Computers use a base 2 numbering system.
– Each digit can take on the values 0 or 1.

– Subsequent digits are worth 2 times the previous digit.

● Example: Binary number  1011
– Decimal equivalent is 1*8+0*4+1*2+1*1 = 11

● Computers use binary because values can be represented
by electrical switches that are off or on with no ambiguity.



  

Binary Addition

● 0 + 0 = 0; 0 + 1 = 1; 1 + 1 = 10 (with a carry bit)
● Four bit example:

 1010
+_0011
= 1101



  

Complement Operation

● One's Complement is calculated by flipping all bits.
● Example: One's Complement of 0011 is 1100.

● Two's Complement is One's Complement plus 1.
● Example: Two's Complement of 0011 is 1101.
● Negative binary numbers are expressed as the Two's 

Complement of the positive number.
● Example:

Decimal -7
Binary -0111 = 1000 + 1 = 1001



  

Binary Subtraction

● Binary subtraction can be done by adding a 
negative value (Two's Complement).

● Example: 
Decimal: 10 – 7 = 3
Binary: 1010 + (1000 + 1) = 0011

(notice the carry from the fourth bit is lost)



  

Hexadecimal

● It is not easy to convert large numbers between binary and decimal.  Try 
it!  The problem is due to 10 not being a power of 2.

● Binary numbers can be cumbersome to deal with.  We need 16 digits 
just to express decimal 64,000.

● For convenience, we often use a base 16 numbering system called 
hexadecimal. Each hexadecimal digit will align with each 4 binary digits.  
Converting to/from binary never requires dealing with a number larger 
than 15 decimal.

● Hex Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
● Example: Binary 10110100 = Hex B4

– Decimal: 11*16+4=180

● Sometimes a base 8 system called octal is used.



  

Boolean Operators

● Boolean logic is math based on values FALSE and TRUE.
– (or 0 and 1)

● Base 10 math has operators like addition, subtraction, 
multiplication and division.

● Binary operators are NOT, AND, OR, XOR.
– NOT: Result is the opposite of the operand.

– AND: Result is 1 if ALL operands are 1, otherwise 0.

– OR: Result is 1 if ANY operands are 1, otherwise 0.

– XOR: Result is 1 if an ODD number of operands are 1,
otherwise 0.



  

Logic Gates

● Electrical circuits designed for boolean logic are 
called Logic Gates.

● NOT, AND, OR, XOR, NAND, NOR, …



  

Combinational Logic

● Interesting logic circuits can be constructed from 
logic gates.

● Logic circuits that only depend upon their current 
inputs are called combinational logic. Examples:
– Half Adder

– Full Adder

● The output will appear after some propagation 
delay.



  

Sequential Logic
● Logic circuits that depend on their current 

inputs and previous state are called sequential 
logic.

● Examples:
– Latches

– Flip-Flops

– Counters

– Registers

● Sequential logic is useful for holding binary values



  

Arithmetic Logic Unit

● A combinational logic circuit known as an 
Arithmetic Logic Unit (ALU) is available for 
computing simple integer math functions like 
ADD, SUBTRACT, AND, OR, XOR, and 
Complement.



  

Memory

● Circuits for storing large amounts of data are 
called memory.

● Memory that cannot be modified once the initial 
contents are stored is called Read Only Memory 
(ROM).  ROM retains its contents even after 
power is removed.

● Memory that can read or update any location is 
called Random Access Memory (RAM).  RAM 
loses its contents after power is removed.



  

Central Processing Unit

● A sequential logic circuit that executes a list of instructions is a 
central processing unit (CPU).

● This circuit includes other circuits such as:
– Registers

– ALU

– Instruction Decoding

– Sequencer

● External circuits are required for clock signal, memory, Input / 
Output (I/O).

● A clock signal is a periodic pulse that is used for sequencing 
sequential circuits. 



  

Microcontroller

● A microcontroller (MCU) is a circuit that 
combines a CPU, clock, memory, and I/O 
peripherals.

● An MCU is typically embedded in a product for 
control purposes.

● One product example is ROBOTS!



  

System on a Chip (SOC)

● An SOC is similar to an MCU, but it contains 
very sophisticated peripherals, such as USB 
and graphics display controllers.

● By combining an SOC and a few components, 
a complete computer can be produced. 
Examples: Raspberry Pi, Beagle Bone



  

A Simple Microprocessor

● Intel 8080 (from 1974)
● 8 Bit Microprocessor
● Useful Introduction: 

http://en.wikipedia.org/wiki/Intel_8080
● Download the user manual here:

http://www.elenota.pl/datasheet-pdf/133557/Inte
l/8080

● Play with an emulator here (use Firefox):
http://bluishcoder.co.nz/js8080/

http://en.wikipedia.org/wiki/Intel_8080
http://www.elenota.pl/datasheet-pdf/133557/Intel/8080
http://www.elenota.pl/datasheet-pdf/133557/Intel/8080
http://bluishcoder.co.nz/js8080/


  

Programming

● A CPU repeats a cycle of:
– Fetching the next instruction from memory (determined 

by the Program Counter).

– Advancing the Program Counter

– Decoding the instruction

– Modifying registers, memory or peripherals

● The activity of designing, implementing and 
debugging a set of instructions (program) is called 
programming.



  

Machine Code Programming

● Programming in the binary language that a 
CPU understands is called machine code 
programming.

● Nobody does this anymore because we have 
computer programs called assemblers that 
automate the process.



  

Assembly Language Programming

● This is the lowest level of programming done by programmers.
● Each line of an assembly language program usually corresponds to one 

instruction that the CPU executes.
● Additional lines are programmed to tell the assembler how to generate the 

machine code.
● Instead of entering the machine code instruction number into the program, 

human friendly mnemonics are used.
– Example: ADD is the addition instruction. 3 is the machine code on the PC.

● The assembler will keep track of memory addresses and allow usage of 
human readable labels for them.

● Assembly language is time consuming and usually only done when a higher 
level programming language cannot be used due to technical reasons, like 
CPU initialization.



  

The “C” Programming Language

● The “C” programming language is a favorite for 
machine control.

● This language is the next level up from assembly 
language.

● C program statements are converted into machine code 
instructions that are directly executable by CPUs.  This 
leads to programs that run very efficiently (fast, small).

● A program that converts “C” language statements to 
machine code is called a C Compiler.



  

C Program Sample

#include <stdio.h>

int main(int argc, char *argv[]) {

    printf(“Hello, World!\n”);

    return 0;

}



  

C Plus Plus (C++)

● The C++ programming language is a superset of the C 
programming language.

● C++ adds object oriented concepts to C.  (C is procedure 
oriented.)

● C++ programs require a larger runtime library, which 
results in a bigger program. (Libraries are pre-compiled 
statements that are combined with the programmer's 
statements to produce the executable program.)

● Editorial: Do not start learning C++ until you have learned 
C!  You learned to walk before you learned to run.



  

C++ Program Sample

#include <iostream>
using namespace std;
int main(int argc, char *argv[]) {
    cout << "Hello, World!" << endl;
    return 0;
}



  

High Level Languages

● High level languages are easier to learn than lower level 
languages. (auto type conversion, no declarations, ...)

● Some high level languages include simple statements 
for doing complex operations, like manipulating 
databases (SQL).

● Many high level languages do not generate machine 
code and require an interpreter program at runtime to 
execute.  The result is slower running programs.

●  Examples: Java, BASIC, shell scripts, batch files 



  

Software Development Process

● Analysis: What do we need to do? (gather requirements)
● Design: How will we do it? (planning)
● Implementation: Program according to the design.
● Testing: Execute the program and check results.
● Debugging: Determine cause of failed test.
● Verification and Validation: Are all requirements satisfied?
● Deployment: Deliver software to the user and install.
● Support: Help the user with issues. (training)
● Maintenance: Update the software when new requirements are 

submitted or problems are found.



  

UML, SysML

● Unified Modeling Language, System Modeling Language
● Software applications (tools) for analysis and design.  

Some tools automate some of the implementation. (code 
generation)

● These are graphical languages for developing pictures that 
clearly specify the analysis and design.

● Includes diagrams for: Use Cases, Objects/Classes, 
Object States, Object Collaboration Sequencing, Flow 
Charts

● A picture is worth a thousand words!



  

Integrated Development 
Environment (IDE)

● Software application (tool) for writing programs, 
compiling executable files, and debugging.

● Programming aids like Auto Completion. It guesses 
what you want to write and offers you suggestions.

● Advanced searching capabilities. Example: Where 
are all places a variable is used?

● Popular IDEs: Eclipse, NetBeans, Arduino IDE, 
Visual Studio



  

Object Oriented Programming

● Focus is on Classes of Objects
● What properties do objects have?
● What operations can be performed on objects?
● What are the relationships between objects, 

especially inheritance.
● Details of implementation are hidden by 

classes.
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