
Developing Solutions

 The purpose of this presentation is to present the basic
mindset of programming in Java
◦ The objective is to provide solutions
◦ The prerequisites are Goals, planning, preparation, and

measurement
◦ The concepts of components, their properties, and behaviors

are related to Java
 The sequence of the presentation relates a couple

common scenarios to the perspective of programming
 A simple control model example is presented to

demonstrate how analysis may result in multiple
solutions, and the solutions may or may not require
programming

 The presentation is limited to Java data types, class
encapsulation, and packages

 When we think of programming, we often think of people
sitting at their keyboards writing the programs that solve
problems, make the programmers rich, let us text each
other in class. Actually, when we use their software, call
each other, use the GPS to navigate, watch YouTube
videos, or perhaps play Pokemon Go, we seldom think
about the programmers that make it possible.

 Those most successful in programming are those that
solve problems for others. With each programmer making
their contribution, large and small, collectively they have
made the world goods more accessible and made
tremendous gains in productivity, safety, and efficiency.

 Successful programmers have something in common.
That is a “goal”.

 Goals give the programmer a focus and a
basis for a solution. Specifically, if the
program has no purpose, it is not likely to
provide any benefit. When I refer to
“solution”, I am referring to a program and
associated systems that satisfy a purpose.

 Purpose
 Tasks
 Analysis
 Implementation
 Assessment/Feedback

 A purpose provides a theme or context.
Whether we are building a website to dole out
videos or sell products, building robotic aerial
vehicles to inspect the drilling tower of
offshore oil rigs, we focus on our purpose to
understand each task we are expected to
perform.

 Tasks are the sequence of activities we
perform in the course of providing a solution.

 Requirements specify the criteria we must
satisfy. Whether it is returning a web page in
under 2 seconds, performing very accurate
calculations, climbing a pyramid, or throwing
a ball through a hole in the wall, our
solutions must meet these requirements, or
fail.

 Analysis is the task of understanding our
goals, breaking them down into tasks,
defining the requirements to be met, and
coming up with a design that will put it all
together to work together to meet our
original goal. Analysis may come from the
innovation of the team, or may be patterned
from the work of others (as found on the
Internet).

 Implementation applies the approach and
insight from the analysis into the mechanical
and software systems that ultimately provide
the benefits that meets our goal.

 Assessment is how we determine of we met
our objectives. Most often, we demonstrate
we satisfied the requirements of the original
goal. As you grow with providing solutions
and programming, you will learn “success” is
a minimum requirement. Other measures for
cost, response time, reliability, and insight to
leverage your solutions to other problems will
become important.

 Design Overview
 Verify Purpose, Requirements, Tasks
 Determine Task Implementation Sequence
 Assign Roles/Skills
 Monitor Activity
 Incremental Testing & Feedback
 Repeat until requirements met

 Things you frequently do are simple tasks. At
least they seem simple to you because you have
done them before.

 For example, when you are hungry, you open the
refrigerator or pantry to see what it there that
will satisfy your hunger. It is “analysis” as you
select your candidates for a solution.

 When you decide on cereal, you go through the
sequence of getting the cereal, milk, bowl, and
spoon and the tasks of getting an appropriate
mix of cereal and milk in the bowl. Hopefully,
you include the tasks to clean up to put the
remaining milk and cereal away.

 The purpose of this exercise is to treat the
making of cookies as a task. In performing this
exercise, the focus will be on the sequence of
steps required. The outcome should produce
some very basic questions as well as some
activities for preparation, process loop, parallel
activities, time critical events, determination of
finished, and cleanup. An assessment of the task
is expected, including an awareness of duration,
labor effort, and build-or-buy decisions.

 Ingredients
 Tools/Equipment required
 Task sequence
 Setup
 Process Loop
 Cleanup

 Complex tasks are similar to simple tasks in
that they solve a particular problem or
provide a specific solution. Whereas complex
tasks may also have a sequence of activities,
they leverage other simple tasks and complex
tasks to work together to provide a single
solution.

 For example, taking a trip in a car.
◦ Load, fill tank, plan route, navigate, arrive, unload

 The purpose of this exercise is to treat the making of
a complex meal as a task.

 Similar to the simple tasks, the outcome should
produce some very basic questions as well as some
activities for preparation, process loop, parallel
activities, time critical events, determination of
finished, and cleanup.

 Unlike a simple task, the complex task may have
tasks running in parallel and/or have tasks that
require another task to finish first, or perhaps tasks
that are paired and performed serially.

 An assessment of the task is expected, including an
awareness of duration, labor effort, build-or-buy
decisions, and whether or not it all came together as
planned.

 Requirement – everything to be ready at the same time, …
 Turkey – roasted, cooled, and carved
 Gravy – turkey gravy piping hot
 Potatoes - mashed
 Salad
 Bread
 Pumpkin Pie – fresh, but cooled, with whipped cream
 Ingredients
 Tools/Equipment required
 Task sequence
 Setup
 Process Loop
 Cleanup

 In analyzing tasks, a clear understanding of the
measurable objective of the successful task and
the requirements influencing the success is
needed. When there are fundamental problems
that detract from success, then reviewing
different types of solutions and historical
solutions is warranted. It may be solutions are
ruled out because of the cost, complexity, or they
are detrimental to the overall goal. It may also
be that the simple, mechanical or manual
solutions may be perfectly adequate and that
extensive effort is not required.

 When a large rocket is launched, it attempt to
rise vertically solely from the thrust of the
solid or liquid fueled rocket motors.

 It is very unstable because the center of
gravity is ahead of the thrust, and physics has
the GC trying to get aft of the thrust.

 The fins on the rocket are not affective until it
is flying sufficiently fast to get enough airflow
form control.

 Control requirements change during use

 Rocket is unstable until it is up to speed.

◦ How does a bottle rocket solve this problem?

◦ How does a model rocket solve this problem?

◦ Which one moves the center of gravity?

 Gimbled Engine
 Inertial Vertical Guidance System –

what do we know
 Controlling the gimbled engine –

what do we know
 What if things change because of speed?

add a controller

 Draw a picture of what you are trying to do.
 Easier to see what you need
 Easier for others to understand

 In activity development, we call these pictures

a “Sequence Diagram” or a “Flow Chart”.

 In designing the objects we manage, we call
them “Object Model Diagrams”. (“OMD”)

 What we need to remember?

 What we know when we use it

 What can we make it do?


Donut Diagram,
◦ variable encapsulation,
◦ Methods,
◦ Maintaining integrity of the data

Management of reusable components and
functions allows us to reuse major sections of
our solutions, or bring in implementations
found elsewhere.

 By component

 By function

 By vendor

 Java is one of the six targeted programming
languages for supportable development.

 It competes with:
◦ Javascript
◦ Python
◦ Ruby
◦ PHP
◦ Go

 These languages allow for faster development
than older languages, and support a very
broad range

 Platform independent
 Broad skill base (many people program)
 Widely adopted - Used in cell phones, web site,

banking, Facebook, search engines
 Many real-world examples on the Internet

Supports Unicode (multiple languages)
Memory Management is suitable for long running
applications

 Excellent network capability
 Very enhanced with packages where working
 components are usually available
 Supports many frameworks (most of the

programming is done for you, and you add your part)

 The Java Development Kit (JDK) is a software
development environment used for
developing Java applications and applets. It
includes the Java Runtime Environment (JRE),
an interpreter/loader (java), a compiler
(javac), an archiver (jar), a documentation
generator (javadoc) and other tools needed in
Java development.

 In practice, most developers use an IDE to
develop and deploy (install) their java
applications.

 Java was developed to run inside a Java
Runtime Environment (JRE).

 The JRE handles the connections to the
system (computer) resources. Using the JRE,
all machine appear to be equal.

 The adage is, “Java is a language you can
write once and run anywhere.”

 Not only does this mean your skills will work
on many platforms, it means your code will
also work on many platforms without having
to write machine-specific code.

 Variables
◦ Class variables
◦ Local variables

 Data Types
◦ Numbers
◦ Boolean
◦ String
◦ References

 Methods
 Classes (Defined Java Class Files)

 Data Centric classes are used primarily for
holding data.

 Behavior centric classes primarily contain the
methods we use for particular purposes:
◦ Formatting output and parsing input
◦ Performing Calculations
◦ Servicing similar requests
◦ Managing activities and sequences

 Usually used to model something that has
properties and to support methods or
behaviors expected of the modeled object.

 For example, we can model an automobile
◦ What do we know about the automobile?

◦ What can we do with the automobile?

◦ What about while we are using the automobile?
 Location, direction, speed, people on board

 Define classes with same methods
 May substitute one class for another if they

support the same methods.
◦ Car, Motorcycle, Bicycle
◦ Feet, Wheels, Tank treads

 Create class objects that are special type of other
objects.

 Vehicle
◦ Motorize Road Vehicle
 Car

 Gocart
 Convertible
 Minivan

 Truck
 Light Duty
 Pickup
 Van

 Heavy Duty
 Flat bed
 Van
 Tractor/Trailer

 Motorcycle

 Create class with a “main” method
 Should contain methods to initialize the

program and its components
 Should contain methods to cleanup before

stopping the program
 Should contain or call methods for the main

processing loop.

 Came to learn Java and we spent most of the time
on understanding what we are trying to
accomplish and how to manage our efforts.

 In real life, the programming language used is a
small, but critical part of any project.

 We discussed why Java is a good candidate.

 We discussed how the basic constructs of Java
can be used to model our components and how
we use them.

	Java Programming
	Course Overview�
	Introduction
	Goals Setting / Objectives�
	Purpose
	Tasks�
	Requirements�
	Analysis�
	Implementation�
	Assessment�
	Management
	Simple Tasks
	Cookies (Exercise)
	Cookies (Exercise) (cont’d)
	Complex Tasks
	Turkey Dinner (Complex Example)
	Turkey Dinner (Complex Example)
	Task Analysis
	Rocket Launch (Walk through)
	Rocket Launch
	Rocket Launch - Controlled
	Draw a Picture
	Object/Encapsulation�
	Components and Tasks/Packages
	Java
	Why Java
	JDK�
	Portable
	Java Class - Donut Diagram
	Classes – Data Centric
	Classes – Behavior Centric
	Classes - Composite
	Polymorphism/Interface
	Polymorphism/Inheritance
	Program Flow
	Summary

